📚 Node [[interop]] exact match
Nodes contain individual contributions whose filenames match your search. x
📓 interop.md by @flancian ️🔗 ✍️

Interop

đź““ 04 - Documentation technique/interop.md by @communecter

[toc]

Intéropérer avec Communecter

Communecter, COmobi, Oceco, Cocolight utilise des apis pour fonctionner indĂ©pendement tout en contribuant Ă  une meme BDD mongo commune. on utilise l’api2 pour tout ce qui concerne le mĂ©tier de communecter https://gitlab.adullact.net/pixelhumain/api2 Vous trouverez les endpoints documentĂ©s dans la collection postman

intéropérer avec OCECO

On doit encore améliorer la documentation mais les endpoints sont là, sont maintenus et fonctionnent https://gitlab.adullact.net/pixelhumain/codoc/-/blob/master/04%20-%20Documentation%20technique/interop%20oceco.md

https://gitlab.adullact.net/pixelhumain/oceco/-/blob/master/private/doc/rest-oceco.md?ref_type=heads https://gitlab.adullact.net/pixelhumain/oceco/-/blob/master/private/doc/open-api.json?ref_type=heads

Interopérabilité avec des sources externes

Vue d’ensemble du chantier sur l’interopérabilité

À gauche, la liste des sources extérieurs sur lesquelles on récupère les données :

  • Wikidata
  • WikipĂ©dia
  • OpenStreetMap
  • OpenDataSoft (la base SIRENE)
  • Data.gouv
  • Datanova (les enseignes La Poste)
  • PĂ´le Emploi
  • SCANR
  • EDF

Au milieu, le processus de Conversion des données (détails sur le prochain schéma) A droite, l’affichage des données converties sur le site de Communecter ainsi que des exemple d’usage de ces données par des sites extérieurs.

Conversion des données sémantiques we interoperate with using their API

Wikidata

For any city, We retreive main information available on Wikidata The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

The convert system will interrogate the Wikidata API to get data in JSON. The next exemple is the data for the city of Saint-Denis, capital city of Réunion island : And convert this data in the pivot language named “PH onthology”

/ph/api/convert/wikipedia?url=https://www.wikidata.org/wiki/Special:EntityData/Q47045.json

[Exemple Wikidata here](/4 - Documentation technique/api.md) Here are the mapping

Source’s data PH onthology
itemLabel.value name
coor.latitude geo.latitude
coor.longitude geo.longitude
item.value url
itemDescription.value description
  • We’ll want to contributing back any extra data we can offer with COpĂ©dia (coming soon)

DBpedia

  • For any city, We retreive main information available on Wikipedia

OpenStreetMap

For any city, we retreive main information avaible on OSM The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

The next exemple is all the OSM data of the city of Saint-Louis :

http://overpass-api.de/api/interpreter?data=[out:json];node[%22name%22](poly:%22-21.303505996763%2055.403919253998%20-21.292626813288%2055.391189163162%20-21.282029142394%2055.381522536523%20-21.256155186265%2055.392395046639%20-21.232012804782%2055.387888015185%20-21.211100938923%2055.390619722192%20-21.199480966855%2055.382654775478%20-21.185882138486%2055.385961778627%20-21.173346518752%2055.389949958731%20-21.16327583783%2055.399563417107%20-21.14709868917%2055.405379688232%20-21.166028899095%2055.414700890276%20-21.184085220909%2055.432085218794%20-21.190290936422%2055.440880800108%20-21.195166490948%2055.462318490892%20-21.237553168259%2055.459769285867%20-21.258726107298%2055.463692709631%20-21.286021128961%2055.455515913879%20-21.294777773557%2055.419916682666%20-21.303505996763%2055.403919253998%22);out%2030;

Here are the mapping

Source’s data PH onthology
tags.name name
lat geo.latitude
long geo.longitude
type type
tags.amenity tags.0

Exemple OSM here

  • We’ll want to contributin back any extra data we can offer with [COSM](/4 - Documentation technique/api.md) (coming soon)

Contribuez Ă  OSM

COSM a pour but donner Ă  l’utilisateur une meilleur visibilitĂ© des Ă©lĂ©ments OSM d’un territoire, de pouvoir contribuez a enrichir les tags OSM d’un OSM. COSM permet Ă  l’utilisateur de pouvoir lister l’intĂ©gralitĂ© des Ă©lĂ©ments OSM pour un scope gĂ©ographique (uniquement les villes pour le moment). Les Ă©lĂ©ments sont afficher en bleu s’il ont un type. C’est Ă  dire, soit :

  • un tag "amenity"
  • un tag "place"
  • un tag "office"
  • un tag "leisure"
  • un tag "shop"

L’utilisateur peut Ă  tout moment cliquer sur le bouton "Voir tous les tags" pour … voir tous les tags de l’Ă©lĂ©ment OSM. Dans le cadre listant tous les tags de l’Ă©lĂ©ment l’utiliseur peut en cliquant sur "Modifier/Ajouter un tag" ajouter ou modifier un tag. Pour on ne peut ajouter que les 5 tags citĂ©s plus haut. L’information sera directement pusher vers la page OSM de l’Ă©lĂ©ment en question.

Data.gouv

For any city, we retreive main information of the organizations placed in this city The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

The module will find all the organizations placed in the geographic scope filter and then extract all the data in the differents datasets available. The next exemple is all the data of the different structure of Méto-France, meteorological center of France.

https://www.data.gouv.fr/api/1/datasets/54a12162c751df720a04805a/

Here are the mapping

Source’s data PH onthology
slug name
page url
tags[] tag[]
item.value url
owner creator

Exemple Data.gouv here

PĂ´le emploi

For any city, we retreive all the job offer. (no exact localisation of the job place) The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

To get data with the Pôle emploi’s API, a token is needed. The next exemple fetch all the job offer of the city of Saint-Louis.

https://api.emploi-store.fr/partenaire/infotravail/v1/datastore_search_sql?sql=SELECT%20%2A%20FROM%20%22421692f5-f342-4223-9c51-72a27dcaf51e%22%20WHERE%20%22CITY_CODE%22=%2797414%27%20LIMIT%2030

OpenDataSoft (SIREN database)

For any city, we retreive all the organizations and the association of the SIREN’s database. The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

The next exemple will fetch all the data in the SIRENE database for the city of Saint-Louis.

https://data.opendatasoft.com/api/records/1.0/search/?dataset=sirene%40public&facet=categorie&facet=proden&facet=libapen&facet=siege&facet=libreg_new&facet=saisonat&facet=libtefen&facet=depet&facet=libnj&facet=libtca&facet=liborigine&rows=30&start=0&geofilter.polygon=(-21.303505996763,55.403919253998),(-21.292626813288,55.391189163162),(-21.282029142394,55.381522536523),(-21.256155186265,55.392395046639),(-21.232012804782,55.387888015185),(-21.211100938923,55.390619722192),(-21.199480966855,55.382654775478),(-21.185882138486,55.385961778627),(-21.173346518752,55.389949958731),(-21.16327583783,55.399563417107),(-21.14709868917,55.405379688232),(-21.166028899095,55.414700890276),(-21.184085220909,55.432085218794),(-21.190290936422,55.440880800108),(-21.195166490948,55.462318490892),(-21.237553168259,55.459769285867),(-21.258726107298,55.463692709631),(-21.286021128961,55.455515913879),(-21.294777773557,55.419916682666),(-21.303505996763,55.403919253998)

Here are the mapping

Source’s data PH onthology
fields.l1_declaree name
fields.categorie type
fields.siret shortDescription
fields.coordonnees.0 geo.latitude
fields.coordonnees.1 geo.longitude
fields.libapen tags.0

[Exemple OpenDataSoft here](/4 - Documentation technique/api.md)

ScanR ( National Education )

For any city, we retreive main information from the national education of France The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

The next exemple fetch all the actives research strutures of the city of Bordeaux :

https://data.enseignementsup-recherche.gouv.fr/api/records/1.0/search/?dataset=fr-esr-etablissements-publics-prives-impliques-recherche-developpement&facet=siren&facet=libelle&facet=date_de_creation&facet=categorie&facet=libelle_ape&facet=tranche_etp&facet=categorie_juridique&facet=wikidata&facet=commune&facet=unite_urbaine&facet=departement&facet=region&facet=pays&facet=badge&facet=region_avant_2016&rows=30&start=0&geofilter.polygon=(44.810795852605,-0.5738778170842),(44.817148298105,-0.57643460444186),(44.823910193873,-0.58695822406613),(44.818476638462,-0.60304723869607),(44.822474304509,-0.61064859861704),(44.824937843733,-0.61415033833008),(44.835177466959,-0.61079419661495),(44.841384923705,-0.62771243191386),(44.860667021743,-0.63833642556746),(44.871658097695,-0.63105127891779),(44.86227970331,-0.61630176568479),(44.854215265872,-0.59460939385687),(44.865671076253,-0.57646019656194),(44.869188961886,-0.57608874140575),(44.909402227434,-0.58088555560083),(44.908480410411,-0.57648917779388),(44.916666965125,-0.54773554113942),(44.889099273803,-0.53553255107571),(44.869138522062,-0.54141014437767),(44.868086689933,-0.53680669655034),(44.861267174723,-0.53784686147751),(44.848134506953,-0.53761462401784),(44.842390488778,-0.5422310311368),(44.836291776079,-0.54665943781219),(44.829021270567,-0.53642317794196),(44.822772234064,-0.53766321563778),(44.813135278103,-0.55606047183132),(44.810795852605,-0.5738778170842)

Here are the mapping

Source’s data PH onthology
fields.libelle name
fields.site_web shortDescription
fields.geolocalisation.0 geo.latitude
fields.geolocalisation.1 geo.longitude

[Exemple ScanR here](/4 - Documentation technique/api.md)

  • Datasets used :
    • Public or private research and development structures
    • Member of the university institute of France

Datanova (La Poste)

For any city, we retreive the location of all buildings of La Poste The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) : The next exemple will fetch all La Poste buildings localised in the city of Saint-Louis.
https://datanova.laposte.fr/api/records/1.0/search/?dataset=laposte_poincont&rows=30&start=0&geofilter.polygon=(-21.303505996763,55.403919253998),(-21.292626813288,55.391189163162),(-21.282029142394,55.381522536523),(-21.256155186265,55.392395046639),(-21.232012804782,55.387888015185),(-21.211100938923,55.390619722192),(-21.199480966855,55.382654775478),(-21.185882138486,55.385961778627),(-21.173346518752,55.389949958731),(-21.16327583783,55.399563417107),(-21.14709868917,55.405379688232),(-21.166028899095,55.414700890276),(-21.184085220909,55.432085218794),(-21.190290936422,55.440880800108),(-21.195166490948,55.462318490892),(-21.237553168259,55.459769285867),(-21.258726107298,55.463692709631),(-21.286021128961,55.455515913879),(-21.294777773557,55.419916682666),(-21.303505996763,55.403919253998)

Here are the mapping

Source’s data PH onthology
fields.libelle_du_site name
recordid type
fields.adresse address.streetAddress
fields.latlong.0 geo.latitude
fields.latlong.1 geo.longitude
fields.libapen tags.0
**[Exemple Datanova here](https://github.com/pixelhumain/wiki/wiki/Doc-de-l’API#exemple-datanova-)**

Smart Citizen (coming soon)

  • onclick : we’ll show all SCK kits for a given city

Umaps (coming soon)

  • POI’s of type geoJson, on click we show the content on our map

WordPress RSS (coming soon)

  • any WP blog’s RSS can be pluggued to an elements wall

using an iframe

FramaPads

  • users can use Framapads from inside CO (simple Iframe)

Copédia

Une autre façon de voir WikipĂ©dia …

Accessible depuis l’url suivante : /co2/#interoperability.copedia

Dans CopĂ©dia, le but est de permettre Ă  l’utilisateur d’avoir une autre vision d’une page WikipĂ©dia, de faciliter sa recherche et de la rendre plus intuitive.

Consulter la données Wikipédia

Copédia permet en selectionnant un scope géographique (uniquement les villes pour le moment) de lister tous les arcticles Wikipédia en liens avec la page Wikipédia de la ville selectionné (tout liens hypertexte renvoyant vers une autre page Wikipédia).

⥅ [[/Images/copedia.png]]

Les liens Wikipédia listés sont ainsi catégorisés parmis 5 grands types :

  • Evenement
  • Organisation
  • Lieu
  • Personne
  • Autre (Possède un type mais qui ne rentre pas dans les catĂ©gories prĂ©cedemment citĂ©es)
  • IndĂ©fini (Ne possède pas de type)

Il est possible Ă  tous moment de pouvoir filtrer parmis ces 6 grands types et ainsi obtenir par exemple uniquement les personnes d’une page WikipĂ©dia.

Copédia met également les dates en relations avec certains éléments, dans une frise chronologique.

Les dates que Copédia affiche sont :

  • La date de dĂ©but d’un Ă©venement (un point) ou alors toute la durĂ©e de l’Ă©venement (si possible)
  • La date de crĂ©ation d’une organisation
  • La date de naissance d’une naissance

Pour tous les éléments listés il est possible de :

  • Consulter leur page WikipĂ©dia (en cliquant sur l’icone de WikipĂ©dia)
  • Consulter leur page DBPĂ©dia (en cliquant sur l’icone de DBPĂ©dia)
  • Consulter leur page Wikidata (en cliquant sur l’icone de Wikidata)
  • Consulter un rĂ©sumĂ© de la page WikipĂ©dia (avec photo si disponible) de la page WikipĂ©dia de l’Ă©lĂ©ment (en cliquant sur le nom de l’Ă©lĂ©ment)
  • Effectuer une "recherche CopĂ©dia" listant l’intĂ©gralitĂ© des liens WikipĂ©dia contenu dans la page WikipĂ©dia de l’Ă©lĂ©ment ciblĂ© et ainsi pouvoir rĂ©pĂ©ter tous le processus dĂ©crit plus haut. (en cliquant sur l’icone de CopĂ©dia)

Contribuer à Wikipédia

Si un Ă©lĂ©ment ne possède pas de type, il est possible d’ajouter vous mĂŞme un type Ă  cet Ă©lĂ©ment en cliquant sur le bouton "Ajouter un type (Wikidata)" qui va permettre Ă  l’utilisateur de pusher lui mĂŞme un type directement dans la page Wikidata de l’Ă©lĂ©ment parmis ces 4 grands type :

  • Personne
  • Lieu
  • Organisation
  • Evenement

EDF

Ce document dĂ©crit les aspects techniques nĂ©cessaires pour intĂ©grer les donnĂ©es d’Open Data EDF RĂ©union dans la plateforme Communecter, permettant ainsi une exploitation optimisĂ©e des donnĂ©es Ă©nergĂ©tiques disponibles.

Objectifs

  • Faciliter la rĂ©cupĂ©ration des donnĂ©es ouvertes pour les utilisateurs de Communecter.
  • Assurer une mise Ă  jour rĂ©gulière des donnĂ©es Ă©nergĂ©tiques sur Communecter.
  • Fournir des visualisations et des analyses enrichies dans un cadre communautaire.

Sources de données et formats disponibles

Les données disponibles sur le site Open Data EDF Réunion sont principalement accessibles via :

  • API REST : Permet de rĂ©cupĂ©rer les donnĂ©es sous format JSON.
  • Fichiers tĂ©lĂ©chargeables : CSV, Excel.
  • Cartes interactives : DonnĂ©es gĂ©olocalisĂ©es.

Données pertinentes pour Communecter :

  • Production d’électricitĂ© (par filière et en temps rĂ©el).
  • Consommation Ă©nergĂ©tique (par commune, secteur, annĂ©e).
  • Part des Ă©nergies renouvelables.
  • Installations et infrastructures (localisation, type).

Spécifications techniques

API Open Data EDF

  • Endpoint de base : https://opendata-reunion.edf.fr/api/records/1.0/search/
  • Paramètres utiles :
    • dataset : Nom du dataset (e.g., production-annuelle-delectricite-par-filiere).
    • rows : Nombre de rĂ©sultats.
    • facet : Facettes pour filtrer (e.g., annĂ©e, filière).
    • q : RequĂŞte pour filtrage avancĂ©.

Exemple de requĂŞte :

https://opendata-reunion.edf.fr/api/records/1.0/search/?dataset=production-annuelle-delectricite-par-filiere&rows=10&facet=annee_prod&facet=filiere

Pipeline de traitement sur Communecter :

  • Extraction : RĂ©cupĂ©ration des donnĂ©es brutes via l’API.
  • Transformation : Formatage et nettoyage des donnĂ©es.
  • Affichage : Affichage des donnĂ©es dans la page filières Energie de La RĂ©union.

L’affichage des données d’Open Data EDF Réunion dans la plateforme Communecter permettra une valorisation des données énergétiques à La Réunion. Cela offrira aux utilisateurs une meilleure compréhension des enjeux énergétiques locaux, tout en favorisant les initiatives citoyennes et les projets collaboratifs.

đź““ en/04 - Documentation technique/interop.md by @communecter

Interopérabilité

Vue d’ensemble du chantier sur l’interopérabilité

À gauche, la liste des sources extérieurs sur lesquelles on récupère les données :

  • Wikidata
  • WikipĂ©dia
  • OpenStreetMap
  • OpenDataSoft (la base SIRENE)
  • Data.gouv
  • Datanova (les enseignes La Poste)
  • PĂ´le Emploi
  • SCANR

Au milieu, le processus de Conversion des données (détails sur le prochain schéma) A droite, l’affichage des données converties sur le site de Communecter ainsi que des exemple d’usage de ces données par des sites extérieurs.

Conversion des données sémantiques we interoperate with using their API

Wikidata

For any city, We retreive main information available on Wikidata The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

The convert system will interrogate the Wikidata API to get data in JSON. The next exemple is the data for the city of Saint-Denis, capital city of Réunion island : And convert this data in the pivot language named “PH onthology”

/ph/api/convert/wikipedia?url=https://www.wikidata.org/wiki/Special:EntityData/Q47045.json

[Exemple Wikidata here](/4 - Documentation technique/api.md) Here are the mapping

Source’s data PH onthology
itemLabel.value name
coor.latitude geo.latitude
coor.longitude geo.longitude
item.value url
itemDescription.value description
  • We’ll want to contributing back any extra data we can offer with COpĂ©dia (coming soon)

DBpedia

  • For any city, We retreive main information available on Wikipedia

OpenStreetMap

For any city, we retreive main information avaible on OSM The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

The next exemple is all the OSM data of the city of Saint-Louis :

http://overpass-api.de/api/interpreter?data=[out:json];node[%22name%22](poly:%22-21.303505996763%2055.403919253998%20-21.292626813288%2055.391189163162%20-21.282029142394%2055.381522536523%20-21.256155186265%2055.392395046639%20-21.232012804782%2055.387888015185%20-21.211100938923%2055.390619722192%20-21.199480966855%2055.382654775478%20-21.185882138486%2055.385961778627%20-21.173346518752%2055.389949958731%20-21.16327583783%2055.399563417107%20-21.14709868917%2055.405379688232%20-21.166028899095%2055.414700890276%20-21.184085220909%2055.432085218794%20-21.190290936422%2055.440880800108%20-21.195166490948%2055.462318490892%20-21.237553168259%2055.459769285867%20-21.258726107298%2055.463692709631%20-21.286021128961%2055.455515913879%20-21.294777773557%2055.419916682666%20-21.303505996763%2055.403919253998%22);out%2030;

Here are the mapping

Source’s data PH onthology
tags.name name
lat geo.latitude
long geo.longitude
type type
tags.amenity tags.0

Exemple OSM here

  • We’ll want to contributin back any extra data we can offer with [COSM](/4 - Documentation technique/api.md) (coming soon)

Contribuez Ă  OSM

COSM a pour but donner Ă  l’utilisateur une meilleur visibilitĂ© des Ă©lĂ©ments OSM d’un territoire, de pouvoir contribuez a enrichir les tags OSM d’un OSM. COSM permet Ă  l’utilisateur de pouvoir lister l’intĂ©gralitĂ© des Ă©lĂ©ments OSM pour un scope gĂ©ographique (uniquement les villes pour le moment). Les Ă©lĂ©ments sont afficher en bleu s’il ont un type. C’est Ă  dire, soit :

  • un tag "amenity"
  • un tag "place"
  • un tag "office"
  • un tag "leisure"
  • un tag "shop"

L’utilisateur peut Ă  tout moment cliquer sur le bouton "Voir tous les tags" pour … voir tous les tags de l’Ă©lĂ©ment OSM. Dans le cadre listant tous les tags de l’Ă©lĂ©ment l’utiliseur peut en cliquant sur "Modifier/Ajouter un tag" ajouter ou modifier un tag. Pour on ne peut ajouter que les 5 tags citĂ©s plus haut. L’information sera directement pusher vers la page OSM de l’Ă©lĂ©ment en question.

Data.gouv

For any city, we retreive main information of the organizations placed in this city The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

The module will find all the organizations placed in the geographic scope filter and then extract all the data in the differents datasets available. The next exemple is all the data of the different structure of Méto-France, meteorological center of France.

https://www.data.gouv.fr/api/1/datasets/54a12162c751df720a04805a/

Here are the mapping

Source’s data PH onthology
slug name
page url
tags[] tag[]
item.value url
owner creator

Exemple Data.gouv here

PĂ´le emploi

For any city, we retreive all the job offer. (no exact localisation of the job place) The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

To get data with the Pôle emploi’s API, a token is needed. The next exemple fetch all the job offer of the city of Saint-Louis.

https://api.emploi-store.fr/partenaire/infotravail/v1/datastore_search_sql?sql=SELECT%20%2A%20FROM%20%22421692f5-f342-4223-9c51-72a27dcaf51e%22%20WHERE%20%22CITY_CODE%22=%2797414%27%20LIMIT%2030

OpenDataSoft (SIREN database)

For any city, we retreive all the organizations and the association of the SIREN’s database. The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

The next exemple will fetch all the data in the SIRENE database for the city of Saint-Louis.

https://data.opendatasoft.com/api/records/1.0/search/?dataset=sirene%40public&facet=categorie&facet=proden&facet=libapen&facet=siege&facet=libreg_new&facet=saisonat&facet=libtefen&facet=depet&facet=libnj&facet=libtca&facet=liborigine&rows=30&start=0&geofilter.polygon=(-21.303505996763,55.403919253998),(-21.292626813288,55.391189163162),(-21.282029142394,55.381522536523),(-21.256155186265,55.392395046639),(-21.232012804782,55.387888015185),(-21.211100938923,55.390619722192),(-21.199480966855,55.382654775478),(-21.185882138486,55.385961778627),(-21.173346518752,55.389949958731),(-21.16327583783,55.399563417107),(-21.14709868917,55.405379688232),(-21.166028899095,55.414700890276),(-21.184085220909,55.432085218794),(-21.190290936422,55.440880800108),(-21.195166490948,55.462318490892),(-21.237553168259,55.459769285867),(-21.258726107298,55.463692709631),(-21.286021128961,55.455515913879),(-21.294777773557,55.419916682666),(-21.303505996763,55.403919253998)

Here are the mapping

Source’s data PH onthology
fields.l1_declaree name
fields.categorie type
fields.siret shortDescription
fields.coordonnees.0 geo.latitude
fields.coordonnees.1 geo.longitude
fields.libapen tags.0

[Exemple OpenDataSoft here](/4 - Documentation technique/api.md)

ScanR ( National Education )

For any city, we retreive main information from the national education of France The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) :

The next exemple fetch all the actives research strutures of the city of Bordeaux :

https://data.enseignementsup-recherche.gouv.fr/api/records/1.0/search/?dataset=fr-esr-etablissements-publics-prives-impliques-recherche-developpement&facet=siren&facet=libelle&facet=date_de_creation&facet=categorie&facet=libelle_ape&facet=tranche_etp&facet=categorie_juridique&facet=wikidata&facet=commune&facet=unite_urbaine&facet=departement&facet=region&facet=pays&facet=badge&facet=region_avant_2016&rows=30&start=0&geofilter.polygon=(44.810795852605,-0.5738778170842),(44.817148298105,-0.57643460444186),(44.823910193873,-0.58695822406613),(44.818476638462,-0.60304723869607),(44.822474304509,-0.61064859861704),(44.824937843733,-0.61415033833008),(44.835177466959,-0.61079419661495),(44.841384923705,-0.62771243191386),(44.860667021743,-0.63833642556746),(44.871658097695,-0.63105127891779),(44.86227970331,-0.61630176568479),(44.854215265872,-0.59460939385687),(44.865671076253,-0.57646019656194),(44.869188961886,-0.57608874140575),(44.909402227434,-0.58088555560083),(44.908480410411,-0.57648917779388),(44.916666965125,-0.54773554113942),(44.889099273803,-0.53553255107571),(44.869138522062,-0.54141014437767),(44.868086689933,-0.53680669655034),(44.861267174723,-0.53784686147751),(44.848134506953,-0.53761462401784),(44.842390488778,-0.5422310311368),(44.836291776079,-0.54665943781219),(44.829021270567,-0.53642317794196),(44.822772234064,-0.53766321563778),(44.813135278103,-0.55606047183132),(44.810795852605,-0.5738778170842)

Here are the mapping

Source’s data PH onthology
fields.libelle name
fields.site_web shortDescription
fields.geolocalisation.0 geo.latitude
fields.geolocalisation.1 geo.longitude

[Exemple ScanR here](/4 - Documentation technique/api.md)

  • Datasets used :
    • Public or private research and development structures
    • Member of the university institute of France

Datanova (La Poste)

For any city, we retreive the location of all buildings of La Poste The process is the following :

  • We choose a geographic scope (a country) to filter
  • We call our own semantic convert system ([doc avaible here](/4 - Documentation technique/api.md)) : The next exemple will fetch all La Poste buildings localised in the city of Saint-Louis.
https://datanova.laposte.fr/api/records/1.0/search/?dataset=laposte_poincont&rows=30&start=0&geofilter.polygon=(-21.303505996763,55.403919253998),(-21.292626813288,55.391189163162),(-21.282029142394,55.381522536523),(-21.256155186265,55.392395046639),(-21.232012804782,55.387888015185),(-21.211100938923,55.390619722192),(-21.199480966855,55.382654775478),(-21.185882138486,55.385961778627),(-21.173346518752,55.389949958731),(-21.16327583783,55.399563417107),(-21.14709868917,55.405379688232),(-21.166028899095,55.414700890276),(-21.184085220909,55.432085218794),(-21.190290936422,55.440880800108),(-21.195166490948,55.462318490892),(-21.237553168259,55.459769285867),(-21.258726107298,55.463692709631),(-21.286021128961,55.455515913879),(-21.294777773557,55.419916682666),(-21.303505996763,55.403919253998)

Here are the mapping

Source’s data PH onthology
fields.libelle_du_site name
recordid type
fields.adresse address.streetAddress
fields.latlong.0 geo.latitude
fields.latlong.1 geo.longitude
fields.libapen tags.0
**[Exemple Datanova here](https://github.com/pixelhumain/wiki/wiki/Doc-de-l’API#exemple-datanova-)**

Smart Citizen (coming soon)

  • onclick : we’ll show all SCK kits for a given city

Umaps (coming soon)

  • POI’s of type geoJson, on click we show the content on our map

WordPress RSS (coming soon)

  • any WP blog’s RSS can be pluggued to an elements wall

using an iframe

FramaPads

  • users can use Framapads from inside CO (simple Iframe)

Copédia

Une autre façon de voir WikipĂ©dia …

Accessible depuis l’url suivante : /co2/#interoperability.copedia

Dans CopĂ©dia, le but est de permettre Ă  l’utilisateur d’avoir une autre vision d’une page WikipĂ©dia, de faciliter sa recherche et de la rendre plus intuitive.

Consulter la données Wikipédia

Copédia permet en selectionnant un scope géographique (uniquement les villes pour le moment) de lister tous les arcticles Wikipédia en liens avec la page Wikipédia de la ville selectionné (tout liens hypertexte renvoyant vers une autre page Wikipédia).

⥅ [[/Images/copedia.png]]

Les liens Wikipédia listés sont ainsi catégorisés parmis 5 grands types :

  • Evenement
  • Organisation
  • Lieu
  • Personne
  • Autre (Possède un type mais qui ne rentre pas dans les catĂ©gories prĂ©cedemment citĂ©es)
  • IndĂ©fini (Ne possède pas de type)

Il est possible Ă  tous moment de pouvoir filtrer parmis ces 6 grands types et ainsi obtenir par exemple uniquement les personnes d’une page WikipĂ©dia.

Copédia met également les dates en relations avec certains éléments, dans une frise chronologique.

Les dates que Copédia affiche sont :

  • La date de dĂ©but d’un Ă©venement (un point) ou alors toute la durĂ©e de l’Ă©venement (si possible)
  • La date de crĂ©ation d’une organisation
  • La date de naissance d’une naissance

Pour tous les éléments listés il est possible de :

  • Consulter leur page WikipĂ©dia (en cliquant sur l’icone de WikipĂ©dia)
  • Consulter leur page DBPĂ©dia (en cliquant sur l’icone de DBPĂ©dia)
  • Consulter leur page Wikidata (en cliquant sur l’icone de Wikidata)
  • Consulter un rĂ©sumĂ© de la page WikipĂ©dia (avec photo si disponible) de la page WikipĂ©dia de l’Ă©lĂ©ment (en cliquant sur le nom de l’Ă©lĂ©ment)
  • Effectuer une "recherche CopĂ©dia" listant l’intĂ©gralitĂ© des liens WikipĂ©dia contenu dans la page WikipĂ©dia de l’Ă©lĂ©ment ciblĂ© et ainsi pouvoir rĂ©pĂ©ter tous le processus dĂ©crit plus haut. (en cliquant sur l’icone de CopĂ©dia)

Contribuer à Wikipédia

Si un Ă©lĂ©ment ne possède pas de type, il est possible d’ajouter vous mĂŞme un type Ă  cet Ă©lĂ©ment en cliquant sur le bouton "Ajouter un type (Wikidata)" qui va permettre Ă  l’utilisateur de pusher lui mĂŞme un type directement dans la page Wikidata de l’Ă©lĂ©ment parmis ces 4 grands type :

  • Personne
  • Lieu
  • Organisation
  • Evenement
đź““ interop.md by @agora@botsin.space
đź““ interop.md by @an_agora@twitter.com
đź““ interop.md by @anagora.bsky.social
đź““ interop.md by @flancian@social.coop
đź““ interop.md by @flancian@twitter.com
  • [[flancian]] https://twitter.com/{‘id’: ‘773144670507499521’, ‘name’: ‘The Agora is a Federated Knowledge Commons’, ‘username’: ‘flancian’}/status/1546547253925629953
    • @GoLinks @an_agora @TrottoHQ Want to [[interop]]?

Loading pushes...

Rendering context...